On the solvability of a mathematical model for prion proliferation
نویسندگان
چکیده
We show that a model describing the interaction between normal and infectious prion proteins admits global solutions. More precisely, supposing the involved degradation rates to be bounded, we prove global existence and uniqueness of classical solutions. Based on this existence theory, we provide sufficient conditions for the existence of global weak solutions in the case of unbounded splitting rates. Moreover, we prove global stability of the disease-free steady state. © 2005 Elsevier Inc. All rights reserved.
منابع مشابه
On the $c_{0}$-solvability of a class of infinite systems of functional-integral equations
In this paper, an existence result for a class of infinite systems of functional-integral equations in the Banach sequence space $c_{0}$ is established via the well-known Schauder fixed-point theorem together with a criterion of compactness in the space $c_{0}$. Furthermore, we include some remarks to show the vastity of the class of infinite systems which can be covered by our result. The a...
متن کاملNILPOTENCY AND SOLUBILITY OF GROUPS RELATIVE TO AN AUTOMORPHISM
In this paper we introduce the concept of α-commutator which its definition is based on generalized conjugate classes. With this notion, α-nilpotent groups, α-solvable groups, nilpotency and solvability of groups related to the automorphism are defined. N(G) and S(G) are the set of all nilpotency classes and the set of all solvability classes for the group G with respect to different automorphi...
متن کاملA stochastic mathematical model of avascular tumor growth patterns and its treatment by means of noises
Due to the rate increase in cancer incidence, many researchers in different fields have been conducting studies on cancer-related phenomena. Most studies are conducted to focus on cellular and molecular aspects of cancerous diseases and treatment strategies. Physicists have been using mathematical modeling and simulation to explain the growth pattern of tumors. Although most published studies i...
متن کاملMathematical Modeling of Cancer Cells and Chemotherapy Protocol Dealing Optimization Using Fuzzy Differential Equations And Lypunov Stability Criterion
Mathematical models can simulate the growth and proliferation of cells in the interaction with healthy cells, the immune system and measure the toxicity of drug and its effects on healthy tissue pay. One of the main goals of modeling the structure and growth of cancer cells is to find a control model suitable for administration among patients. In this study, a new mathematical model is designed...
متن کاملThe shape of the polymerization rate in the prion equation
We consider a polymerization (fragmentation) model with size-dependent parameters involved in prion proliferation. Using power laws for the different rates of this model, we recover the shape of the polymerization rate using experimental data. The technique used is inspired from [30], where the fragmentation dependence on prion strains is investigated. Our improvement is to use power laws for t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005